亚洲无码A一A二A三区,日本水蜜桃身体乳的美白效果 http://m.teatotalar.com 集邦化合物半導(dǎo)體是化合物半導(dǎo)體行業(yè)門戶網(wǎng)站,提供SiC、GaN等化合物半導(dǎo)體產(chǎn)業(yè)資訊、研討會(huì)以及分析報(bào)告。 Thu, 22 Feb 2024 09:27:53 +0000 zh-CN hourly 1 https://wordpress.org/?v=6.3.1 晶圓級(jí)立方SiC單晶生長(zhǎng)取得突破 http://m.teatotalar.com/power/newsdetail-67170.html Thu, 22 Feb 2024 09:51:16 +0000 http://m.teatotalar.com/?p=67170 碳化硅(SiC)具有寬帶隙、高擊穿場(chǎng)強(qiáng)、高飽和電子漂移速率和高熱導(dǎo)率等優(yōu)異性能,在新能源汽車、光伏和5G通訊等領(lǐng)域具有重要的應(yīng)用。與目前應(yīng)用廣泛的4H-SiC相比,立方SiC(3C-SiC)具有更高的載流子遷移率(2-4倍)、低的界面缺陷態(tài)密度(低1個(gè)數(shù)量級(jí))和高的電子親和勢(shì)(3.7 eV)。

利用3C-SiC制備場(chǎng)效應(yīng)晶體管,可解決柵氧界面缺陷多導(dǎo)致的器件可靠性差等問題。但3C-SiC基晶體管進(jìn)展緩慢,主要是缺乏單晶襯底。前期大量研究表明,3C-SiC在生長(zhǎng)過程中很容易發(fā)生相變,已有的生長(zhǎng)方法不能獲得單一晶型的晶體。

根據(jù)經(jīng)典晶體生長(zhǎng)理論,對(duì)于光滑界面晶體,同質(zhì)二維形核需要克服臨界勢(shì)壘,存在臨界Gibbs自由能或過飽和度,而生長(zhǎng)則可以在任意小的過飽和度下進(jìn)行。對(duì)于異質(zhì)形核,由于引入了新的固-固界面能,二維形核需克服更高的臨界勢(shì)壘。因此在相同過飽和度下,同質(zhì)形核和生長(zhǎng)在能量上明顯優(yōu)于異質(zhì)形核和生長(zhǎng),使得后者很難發(fā)生。

近期,中國(guó)科學(xué)院物理研究所/北京凝聚態(tài)物理國(guó)家研究中心的陳小龍團(tuán)隊(duì)提出了調(diào)控固-液界面能,在異質(zhì)籽晶上較同質(zhì)籽晶優(yōu)先形核和生長(zhǎng)的學(xué)術(shù)思想。

主要包括:1)3C(111)面和4H(0001)面的晶格失配度小,固-固界面能很低;2)4H和3C體相Gibbs自由能的差別較??;3)如果通過調(diào)控熔體成份,使得3C(111)-熔體的界面能較4H(0001)-熔體的界面能足夠低,二維形核以及后續(xù)生長(zhǎng)的Gibbs自由能則對(duì)于3C相更有利。該團(tuán)隊(duì)自主設(shè)計(jì)、搭建了超高溫熔體表面張力和固-液接觸角測(cè)試設(shè)備,在高溫下測(cè)量了不同成份熔體的表面張力,熔體與4H-SiC、3C-SiC的接觸角,獲得了4H-SiC、3C-SiC與高溫熔體的固-液界面能的變化規(guī)律,驗(yàn)證了界面能調(diào)控的可行性。該團(tuán)隊(duì)利用高溫液相法,實(shí)現(xiàn)了相同過飽和度條件下3C-SiC的Gibbs自由能更低的要求,抑制了生長(zhǎng)過程中的相變,在國(guó)際上首次生長(zhǎng)出了直徑2-4英寸、厚度4-10mm、單一晶型的3C-SiC單晶,如圖1和圖2所示。

圖1. 采用高溫液相法,在六方碳化硅(4H-SiC)籽晶上實(shí)現(xiàn)了2-4英寸、厚度4-10 mm、立方碳化硅(3C-SiC)的異質(zhì)形核和晶體穩(wěn)定生長(zhǎng)

沿晶體厚度方向的Raman散射光譜測(cè)量結(jié)果表明,生長(zhǎng)一開始,3C-SiC即在4H-SiC籽晶上形核、生長(zhǎng),兩者共存區(qū)小于20 μm,見圖2(a-b),進(jìn)一步證實(shí)了上述理論。(111)生長(zhǎng)面的X射線搖擺曲線半高寬的平均值為30 arcsec,表明生長(zhǎng)的3C-SiC具有高的結(jié)晶質(zhì)量。3C-SiC單晶的室溫電阻率只有0.58 mΩ·cm,為商業(yè)化4H-SiC晶片電阻率(15-28 mΩ·cm)的~1/40,有望降低器件的能量損耗。

圖2. 3C-SiC晶型的確定。a) 在(111)生長(zhǎng)面上隨機(jī)選取20個(gè)點(diǎn)的Raman散射光譜圖,插圖為測(cè)試點(diǎn)在晶體上的位置分布圖。b) 沿晶體厚度方向的Raman散射光譜圖。c) 300 K測(cè)量的光致發(fā)光(PL)圖譜。d) 高角環(huán)形暗場(chǎng)掃描透射電鏡(HAADF-STEM)圖。插圖為沿[110]晶帶軸的選區(qū)電子衍射(SAED)圖晶圓級(jí)3C-SiC單晶的生長(zhǎng)填補(bǔ)了國(guó)內(nèi)外空白,使3C-SiC晶體的量產(chǎn)成為可能,也為開發(fā)性能優(yōu)異的電力電子器件提供了新的契機(jī)。同時(shí),異質(zhì)籽晶上較同質(zhì)籽晶優(yōu)先形核和生長(zhǎng)的機(jī)制拓展了傳統(tǒng)的晶體生長(zhǎng)理論。

來源:中國(guó)工陶

更多SiC和GaN的市場(chǎng)資訊,請(qǐng)關(guān)注微信公眾賬號(hào):集邦化合物半導(dǎo)體。

]]>